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STRESS INTENSITY FACTORS

AND CRACK DEVIATION CONDITIONS

IN A BRITTLE ANISOTROPIC SOLID

UDC 539.375S. A. Nazarov

For arbitrary anisotropy in the linear manifold of singular solutions generating square-root singular-
ities of the crack tip stress, a special basis is introduced that possesses the same properties as in the
isotropic case and provides simple integral representations for the attributes of the energy fracture
criterion, in particular, the conditions of crack deviation from a straight path.
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1. Normalizations of Singular Solutions. For isotropic and some orthotropic planar elastic media, direct
calculations (see [1–3] and other papers) show that the stresses at the crack tip O have square-root singularities
O(r−1/2). In this case, the angular parts of the corresponding displacement vectors

U j(x) = r1/2Φj(ϕ) (j = 1, 2) (1.1)

are chosen according to the classical definition of the stress intensity factors (SIF)

Ki = lim
x→+0

(2πr)1/2σ3−i,2(u;x1, 0) (i = 1, 2). (1.2)

In (1.1) and (1.2), x = (x1, x2) and (r, ϕ) are Cartesian and polar coordinates with origin O; the positive semiaxis
Ox1 and the polar axis are at the crack continuation, along which the limit (1.2) is calculated; σjk(u) are the
Cartesian components of the stress tensor found from the displacement field u = (u1, u2). In [4, 5] it is established
that the square-root singularity is retained for any anisotropy, and in [6], it is verified that the definition of the
SIF (1.2) remains consistent. The latter verification is fairly simple. If for the displacements (1.1), the stresses
σk2(U j ;x1, 0) depend linearly on Ox1, there exists a field U(x) = r1/2Φ(ϕ) such that

σ21(U ;x1, 0) = σ22(U ;x1, 0) = 0, x1 > 0. (1.3)

Together with the equilibrium equations and boundary conditions

− ∂

∂x1
σ1k(U ;x)− ∂

∂x2
σ2k(U ;x) = 0, x ∈ R2 \ Λ, k = 1, 2,

σ21(U ;x1, 0) = 0, σ22(U ;x1, 0) = 0, x1 < 0,

(1.4)

where Λ = {x ∈ R2: x1 ≤ 0, x2 = 0} is a semi-infinite cut, relations (1.3) show that U is a solution of the
homogeneous elasticity problem in the upper half-plane that is bounded in any neighborhood of the point O. As is
known, this solution is smooth, i.e., the singularity O(r1/2) is forbidden. The above contradiction shows that one
can always match the basis (1.1) of singular solutions to the normalization conditions

σ3−i,2(U j ; r, 0) = δi,j(2πr)−1/2, i, j = 1, 2 (1.5)
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and thus obtain a correct definition of the two SIFs — K1 and K2. On the right side of (1.5), δi,j is the Kronecker
symbol.

The basis (1.1) which satisfies conditions (1.5) should be considered adapted to the force fracture criteria
proposed by Irwin, Novozhilov, and others. In [6, 7], we proposed bases adapted to the energy and deformation
criteria, respectively. In the second case, the normalization condition that replace (1.5) are written as

(1/2)[U j
i ](−r) = 4(2π)−1/2B11,11δ3−i,jr

1/2, i, j = 1, 2. (1.6)

Here [u](x1) = u(x1,+0) − u(x1,−0) is the jump of the displacement vector on the crack faces Λ; Bjk,pq are the
elements of the pliability tensor, which is the reverse of the stiffness tensor A in Hooke’s law σ = Aε (ε is the strain
tensor). As before, the possibility of satisfying conditions (1.6) is established by contradiction: if the displacement
field U(x) = r1/2Φ(ϕ) has a zero jump at the cut Λ, then, by virtue of (1.4), it is a solution of the equilibrium
equations on the punctured plane R2 \ O, and, hence, can have only an integer homogeneity factor but not 1/2.
The reasons for the occurrence of the element B11,11 on the right side of (1.6) instead of the more natural elements
B22,22 and B12,12 will become clear below.

The multipliers on the right side of (1.6) (they were not introduced in [7]) are chosen so that for an isotropic
solid, the normalizations (1.5) and (1.6) give the same basis (1.1). In the anisotropic case, the bases {U jσ} and
{U jε}, generally speaking, differ. For them and for the factors Kσ

j and Kε
j in the expansions near the crack tip O,

the displacement fields

u(x) = Kσ
1 U jσ(x) + Kσ

2 U jσ(x) + . . . = Kε
1U1ε(x) + Kε

2U2ε(x) + . . . (1.7)

have constraints

U jσ = T1jU
1ε + T2jU

2ε, Kε
j = Kσ

1 Tj1 + Kσ
2 Tj2. (1.8)

The elements Tjk of the 2×2 matrix T depend on both the elastic properties of the material and the crack direction
[see (4.7) below]. We note that according to the requirement (1.6) the factors (1.7) in the second representation are
found from the formula

Kε
i = (1/8)(2π)1/2B−1

11,11 lim
x→−0

r−1/2[u3−i](x1), i = 1, 2. (1.9)

According to [8] (see also [6, Sec. 4]), for each basis (1.1) one can uniquely define the basis of the weight
functions

V k(x) = r−1/2Ψk(ϕ) (k = 1, 2), (1.10)

for which the following biorthogonality conditions are satisfied:

Q(U j , V k; Γ) = δj,k, j, k = 1, 2. (1.11)

Here Q is an antisymmetric [i.e., Q(u, v; Γ) = −Q(v, u; Γ)] form that arises as the contour integral in the Green’s
formula

Q(u, v; Γ) =
∫
Γ

{v(x) · σ(n)(u;x)− u(x) · σ(n)(v;x)} ds, (1.12)

where ds is the element of the length of the simple arc Γ that connects the crack faces Λ± of the cut and encompasses
the tip O; σ(n) = σn is the normal stress vector; n is the unit outward normal to the boundary of the domain
contained inside Γ. If u and v satisfy problem (1.4), then, by virtue of Green’s formula, integral (1.12) does not
depend on the path Γ. In addition, in [9] (see also [6, Sec. 4]), we proved a formula that resembles the rule of
integration by parts, namely,

Q(∂1u, v; Γ) = −Q(u, ∂1v; Γ), (1.13)

where ∂1 = ∂/∂x1 is the differentiation along the crack.
The derivative ∂1U

j still solves the problem (1.4) but acquires singularities O(r−1/2) at the crack tip and,
consequently,

∂1U
j(x) = −Mj1V

1(x)−Mj2V
2(x), j = 1, 2. (1.14)
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By virtue of relations (1.11) and (1.13), the following integral representations are valid:

Mjk = Q(∂1U
j , Uk; Γ) = Q(∂1U

k, U j ; Γ) = Mkj , (1.15)

i.e., the 2 × 2 M matrix composed of the coefficients in expansion (1.14) is symmetric. In addition, its positive
definiteness was established in [9, 6]. Hence, one can find a basis {U je} that satisfies the equalities ∂1U

je = −mjV
je,

where mj > 0 are positive eigenvalues of the matrix M . This basis is related to the energy fracture criterion (see
[6, Sec. 5]) and has representations similar to (1.7) and (1.8).

2. Additional Properties of the Strain Basis. Everywhere below, we use the notation U j = U jε. If
{x : x2 = 0} is a plane of elastic symmetry, then U j

k are even function of the variable for j 6= k and even function
for j = k. In particular,

U1
1 (x1,±0) = 0, U2

1 (x1,+0) = −U2
1 (x1,−0) at x1 < 0. (2.1)

One more observation refers to the isotropic case: explicit formulas for the first mode U1 (see, for example,
[2, p. 316]) show that

σ11(U1;x1 ± 0) = 0 at x1 < 0. (2.2)

In other words, according to boundary conditions (1.4) for x1 < 0 and formula (2.2), all stresses on the crack
faces Λ± are eliminated, and, hence, because of the equilibrium equations, the following formulas are valid:

∂2σk2(U1;x1,±0) = −∂1σk1(U1;x1,±0) = 0, x1 < 0, k = 1, 2,

∂2
2σ22(U1;x1,±0) = −∂1∂2σk1(U1;x1,±0) = ∂2

1σ11(U1;x1,±0) = 0, x1 < 0.
(2.3)

The immediate objective is to prove relations (2.1)–(2.3) for arbitrary anisotropy.
Let e be a tensor with Cartesian components e11 = 1 and epq = 0 for p + q > 2. Since B11,11 = e · Be and

σ(U j) = eσ11(U j) on Λ± by virtue of boundary conditions (1.4), we find that

∂1U
j(x1,±0) = ε11(U j ;x1,±0) = e · ε(U j ;x1,±0)

= e ·Bσ(U j ;x1,±0) = B11,11σ11(U j ;x1,±0), x1 < 0. (2.4)

Thus, equality (2.2) and then equalities (2.3) are derived from the properties of the basis (2.1). To verify these
properties, we substitute the fields ∂2U

2 and U j into Green’s formula for an open ring Ξ = {x: 0 < a < r < b,
ϕ ∈ (−π, π)}. Using Eq. (1.4), we obtain

Q(∂2U
2, U j ; Γb)−Q(∂2U

2, U j ; Γa) =
∑
±
±

b∫
a

2∑
k=1

U j
k(−r,±0)σk2(∂2U

2;−r,±0) dr. (2.5)

In this case, Γρ is a circle of radius ρ and since for u = U j and v = ∂2U
2, the integrand in (1.12) is O(r−1), the

integral Q(∂2U
2, U j ; Γρ) does not depend on ρ, i.e., the left side of (2.5) is equal to zero. In addition, ∂2σk2(U2) =

−∂1σk1(U2) and, hence, using boundary conditions (1.4) for x1 < 0 and equality (2.4), we bring formula (2.5) to
the form

0 = B−1
11,11

∑
±
±

b∫
a

U j
1 (−r,±0)∂2

1U2
1 (−r,±0) dr = B−1

11,11 ln
a

b
{Φj

1(+π)Φ2
1(+π)− Φj

1(−π)Φ2
1(−π)}.

The vanishing of the difference in braces implies that

[U j
1 ](−r)

∑
±

U2
1 (−r,±0) + [U2

1 ](−r)
∑
±

U j
1 (−r,±0) = 0,

i.e., the sought relations (2.1) are satisfied by virtue of the normalization (1.6).
We note an interesting consequence of formulas (2.3), by virtue of which the derivative ∂2U

1 (the differ-
entiation is performed across the cracks!) is a power-law solution of the problem (1.4) but acquires a singularity
O(r−1/2) at the tip O. Since, according to (2.2), the strain tensor ε(U1) is eliminated on the crack faces, taking
into account conditions (1.6), we define the jumps

[∂2U
1
1 ](−r) = 2[ε12(U1)](−r)− [∂1U

1
2 ](−r) = 4(2π)−1/2B11,11r

−1/2,
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[∂2U
1
2 ](−r) = [ε22(U1)](−r) = 0.

They are the same as those for −∂1U
2; hence, because the power-law solutions with an exponent of −1/2 [weight

functions; see (1.10) and (1.14)] are uniquely expanded over the basis {∂1U
j}, the following equality holds:

∂2U
1 = −∂1U

2. (2.6)

3. Determining the Stress Intensity Factors. In [10–12, 7] and other papers, relations (2.1), (2.2),
and (2.6), found for an isotropic material by direct calculations, were used to form and employ the weight functions
and invariant integrals, including those of higher orders, to determine the distortion of crack paths by (small)
shear loads. It is remarkable that two constraints that were not noted in (2.1) but are provided by the symmetry
properties in the isotropic case were not used the papers cited. This forces us to adopt the strain basis of singular
solutions subject to the normalization conditions (1.6) as the principal basis.

To impart the meaning of SIF to the factors Kε
j in formulas (1.7) and (1.9), we write relations (1.6) using

only stresses. From (2.4) and (1.6) it follows that

[σ11(U j)](−r) = −4(2πr)−1/2δ2,j , j = 1, 2. (3.1)

In view of the identity (2.2), U1 cannot be uniquely found from the above formula, but owing to relations (2.6) and
(3.1), we obtain one more formula

[∂2σ11(U1)](−r) = −[∂1σ11(U2)](−r) = 2(2π)−1/2r−3/2. (3.2)

We emphasize that ∂/∂x1 = −∂/∂r on the cut Λ. The basis {U jε} and the SIFs Kε
j are now determined. We note

that according to the second equality in (2.1), the left side of (1.6) for j = 2 can be replaced by ±U2
1 (x1,±0) and

for the normalization of U1, we use formula (2.6) instead of (3.2).
The above calculations and conclusions remain valid for a crack on an interface between anisotropic media

provided that the stress singularity exponents remain real (see [6] and the references therein). By virtue of the
requirement (1.6), the relation K1 > 0 provides crack mouth opening (no contact of the faces near the tip O) and
satisfaction of unilateral constraints in the Singorini problem:

σ21(U ;x1,±0) = 0, [σ22(U)](x1) = 0, σ22(U)(x1,±0) 6 0,

[U2](x1) > 0, [U2](x1)σ22(U)(x1,±0) = 0, x1 < 0.
(3.3)

We emphasize that in the presence of power-law solutions r±iγ+1/2Φ±(ϕ) with γ > 0, relations (3.3) are violated
for any nonzero (complex) SIFs, i.e., one cannot do without a complete solution of the Singorini problem — in fact
in [13, 14], a nonlinear problem is solved although linear constitutive relations are used. In this connection, we note
papers [15, 16], in which the rate of liberation of potential strain energy is found for straight crack growth with
possible contact between its faces.

One more advantage of the strain basis {U jε} over the force basis {U jσ} is the preservation of U2ε as a
(unique) power-law solution in the model problem of a crack with faces in contact (cf. [13, 14]; see also boundary
conditions (3.3), where the “≥” and “≤” signs are replaced by “=”). In addition, the element U2ε does not need
to be rearranged for transformations that implement the algebraic equivalence of anisotropic media [17, 3].

4. Crack Deviation Condition. According to the general results of [18; 19, Chapter 7], which are adapted
in [6, 7] to linear elasticity problems, the rate of energy liberation due to the formation of a branch of small length
h > 0 directed at an angle θ from the tip of a main crack is found from the formula

∆U(h, θ) = −1
2

h
2∑

j,k=1

Mjk(θ)KjKk + O(h3/2) (h → +0), (4.1)

in which ∆U(h, θ) is the increment in the potential strain energy and Kj = Kε
j is the SIF (1.9) in formula (1.7) for

solving the problem of a crack in the initial position. In [6], it is shown that

M(0) = M, (4.2)

and the elements of the matrix M are taken from relations (1.14) and (1.15). The same paper gives another
representation for ∆U(h, θ), which is interpreted as a posteriori Griffith’s formula and is related to one of the
invariant integrals.
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The relationship between the matrices M and T is found from formulas (1.14), (4.2) and (1.7), (1.8) using
the asymptotic representation (4.1). We denote by u and uh the solutions of the problem of deformation of a solid Ω
with boundary straight cracks Λ and Λh in the absence of body forces under identical surface loads g applied to
the outer boundary ∂Ω and equal to zero on the crack faces. Substituting u and uh into Green’s formula for the
domain Ω \ Λh, we obtain the equality∫

∂Ω

(
uh · σ(n)(u)− u · σ(n)(uh)

)
ds =

∑
±

∫
Λh
±\Λ±

(
u · σ(n)(uh)− uh · σ(n)(u)

)
ds

=
2∑

i=1

h∫
0

[uh
i ](x1)σ2i(u;x1, 0) dx1. (4.3)

Since σ(n)(u) = σ(n)(uh) = g on ∂Ω, the left side Il of formula (4.3) coincides with the increment in the work of
the external forces and under Clapeyron’s theorem, we have

Il =
∫

∂Ω

g · (uh − u) ds = −2∆U(h, 0). (4.4)

As proved in [9] (see also [6]), near the tip Oh of an extended crack Λh, the field uh(x) is approximated with
accuracy O(h3/2) by the sum

c + Kε
1U1ε(x1 − h, x2) + Kε

2U2ε(x1 − h, x2), (4.5)

where c is a constant vector; Kε
i is the SIF for the initial position of the crack; and (x1 − h, x2) are Cartesian

coordinates with origin Oh. To calculate the right side Ir of equality (4.3), we use the approximation (4.5) for uh

and the first representation (1.7) for u. Taking into account the normalization conditions (1.6) and (1.5) and the
constraint (1.8) on the SIFs Kε

i and Kσ
i we obtain

Ir =
4
π

B11,11

2∑
i=1

Kσ
i Kε

i

h∫
0

r−1/2(h− r)1/2 dr

= 2hB11,11

2∑
i=1

Kσ
i Kε

i + o(h) = 2hB11,11

2∑
i,j=1

T−1
ij Kε

i Kε
j + o(h). (4.6)

Here T−1
ij are the elements of the matrix T−1 which is the reverse of T . Comparing expressions (4.4), (4.6), and

(4.3) with the terms of the asymptotic formula (4.1), we arrive at the relation

M = 2B11,11T
−1. (4.7)

This, in particular, implies that the matrix T of conversion from the strain basis to the force basis is symmetric
and positively defined.

The elements of the matrix M(θ), which is also symmetric and positively defined [7], are the coefficients in
the expansion at infinity

wj(x) = U j(x) +
2∑

k=1

Mjk(θ)V k(x) + O(r−1) (r →∞) (4.8)

for the solution of the problem of a semi-infinite cut Λ with a branch Υ(θ) = {x: x1 ∈ [0, cos θ], x2 = x1 tan θ}:

∂1σ1k(wj ;x)− ∂2σ2k(wj ;x) = 0, x ∈ R2 \ (Λ ∪Υ(θ)), k = 1, 2,

σ(n)(wj ;x) = σ(wj ;x)n(x) = 0, x ∈ Λ± ∪Υ(θ)±.
(4.9)

Here n is the unit outward normal vector,

n = (0,∓1) on Λ±, n = (± sin θ,∓ cos θ)) on Υ(θ)±. (4.10)
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We emphasize that according to relations (4.8) and (1.1), the displacements wj(x) increase at infinity, the solution
of the homogeneous problem (4.9) is not trivial and the coefficients Mjk(θ) for the damped components (1.10) are
uniquely determined.

Let the loading be simple, i.e., the SIFs Kj = τK0
j be proportional to the total time-similar parameter τ > 0.

We assume that the crack is open and, in particular, K0
1 > 0. According to the representation (4.1), the Griffith’s

energy criterion states that the crack branches in the direction θ∗ at the moment τ∗ if the following relations are
satisfied:

F (θ∗; τ∗) = 0,

F (θ; τ) < 0 at any τ < τ∗ and θ.
(4.11)

In this case,

F (τ ; θ) = τ2
2∑

j,k=1

Mjk(θ)KjKk − 4γ(θ), (4.12)

and γ(θ) is the surface energy density, which, generally speaking, depends on the direction of the branch Υ(θ).
Thus, the continuous function F ( · ; θ∗) has a global maximum at the point θ = θ∗ (in the presence of a few
such points, one should pose the question of crack bifurcation or branching). This interpretation of the energy
fracture criterion is conventional (cf. [20, 21, 7] and other papers) and although for the case of complex loading
and quasistatic development of a crack requires refinement, this interpretation is quite applicable to determine the
deviation angle θ∗.

By virtue of the first condition in (4.11) and condition (4.2), straight crack growth (θ = 0) corresponds to
the following critical value of the loading parameter:

τ0 = 2γ(0)1/2
( 2∑

j,k=1

MjkKjKk

)−1/2

. (4.13)

Formula (4.13) contains the SIFs and the coefficients Mjk, which are expressed in (1.15) in terms of the integrals
(1.12) of the elements of the basis {U jε}. If

τ2
0

2∑
j,k=1

M′
jk(0)KjKk 6= 4γ′(0), (4.14)

where the prime denotes the derivative with respect to the angle θ, the second condition in (4.11) is a priori violated,
the crack necessarily deviates from the initial direction (its deviation is observed), fracture begins earlier, i.e., at
τ∗ < τ0, and the critical load decreases.

Let us calculate the derivatives M′
jk(0) using the established properties of the strain basis. For this, we

make the change of variables

x 7→ y = (y1, y2) = (x1 − cos θ, x2 − sin θ) (4.15)

and, considering the angle θ small, we extend the boundary conditions written in the second line of (4.9) to the
half-line L = {y: y1 ≤ 0, y2 = 0}. For slightly curved, smooth and kinked cracks, a rectification method was used in
[22–24, 12, 7] and other papers (in [25], an alternative approach was proposed); it was rigorously substantiated in [19,
Chapter 5]. Confining ourselves to formal asymptotic constructions and referring to [19, 26] for their substantiation,
we seek a solution of problem (4.9), (4.8) in the form

wj(x) = U j(y) + θW j(y) + . . . . (4.16)

Here and below, the dots designate elements that are of no significance for the calculations. Using McLaren’s
formula for the variable ρ−1 := |y|−1 and taking into account relations (4.15) and (1.14), we bring the asymptotic
condition (4.8) to the form

U j(y) + θW j(y) + . . . = wj(x) = U j(x) +
2∑

k=1

Mjk(θ)V k(x) + . . .
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= U j(y) + cos θ∂1U
j(y) + sin θ∂2U

j(y) +
2∑

k=1

Mjk(θ)V k(y) + . . .

= U j(y) +
2∑

k=1

(Mjk(0)−Mjk)V k(y) + θ
{

∂2U
j(y) +

2∑
k=1

M′
jk(0)V k(y)

}
+ . . . .

From this we derive equality (4.2) and the relations

W j(y) = ∂2U
j(y) +

2∑
k=1

M′
jk(0)V k(y) + O(ρ−1), j = 1, 2. (4.17)

Hence, the field W j(y) vanishes at infinity as O(ρ−1/2). Of course, it satisfies the homogeneous equilibrium equations
in (1.4). Seeking the boundary conditions on the crack faces L, according to the boundary condition written in the
second line (4.9), for k = 1, 2 and y1 ∈ (−∞,−1), we have

0 = σ2k(wj ;x1,±0) = σ2k(U j + θW j ; y)
∣∣∣
x2=±0

+ . . .

= σ2k(U j ; y1,− sin θ ± 0) + θσ2k(W j ; y1,− sin θ ± 0) + . . .

= σ2k(U j ; y1,±0) + θ{σ2k(W j ; y1,±0)− ∂2σ2k(U j ; y1,±0)}+ . . . .

Taking into account the boundary conditions in the problem (1.4) and the properties (2.2) and (2.3) of the vectors
U j , we find that

σ2k(W 1; y1,±0) = 0, k = 1, 2; σ22(W 2; y1,±0) = 0,

σ21(W 2; y1,±0) = −∂1σ11(U2; y1,±0), y1 ∈ (−∞,−1).
(4.18)

By virtue of formula (4.10) for the normal n, similar operations with the stresses on the faces of the branch

0 = σ2k(wj ;x1, x1 tan θ ± 0) = σ2k(U j + θW j ; y)
∣∣∣
x2=x1 tan θ±0

+ . . .

= σ2k(U j ; y1,±0) + θ{σ2k(W j ; y1,±0)− y1∂2σ2k(U j ; y1,±0)}+ . . .

give the boundary conditions

σ2k(W 1; y1,±0) = 0, k = 1, 2; σ22(W 2; y1,±0) = 0,

σ21(W 2; y1,±0) = y1∂1σ11(U2; y1,±0) + σ11(U2; y1,±0), y1 ∈ (−1, 0).
(4.19)

As a result, we find that W 1 is a bounded solution of the problem (1.4) that vanishes at infinity, i.e., W 1 = 0, and
the sum of the asymptotic terms indicated on the right of (4.17) is equal to zero in the case j = 1. Now, taking
into account relations (2.6) and (1.14), where j = 2, we conclude that

M′
11(0) = −M21 = −Q(∂1U

1, U2; Γ), M′
12(0) = −M22 = −Q(∂1U

2, U2; Γ). (4.20)

Since M(θ) is a symmetric matrix, it remains to calculate the derivative M′
22(0). We use Green’s formula for the

solutions W 2 and U2 in the circle {y : ρ = R} with a radial cut; after simplifications, we obtain the equality

Q(W 2, U2; ΓR) =
∑
±
±

0∫
−R

U2
1 (y1,±0)σ21(W 2; y1,±0) dy1.

By virtue of formulas (2.1), (2.4) and (4.18), (4.19), the integrand on the upper and lower faces L± coincide and,
consequently, Q(W 2, U2; ΓR) = 0. In the limit R → +∞, W 2 is replaced by the sum of the asymptotic terms
indicated on the right side of formula (4.17), where j = 2, and as a result, using the normalization (1.11), we arrive
at the relation

M′
22(0) = Q(∂2U

2, U2; ΓR). (4.21)
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If {x : x2 = 0} is a plane of elastic symmetry, expression (4.21) vanishes. We note that for the isotropic case,

M11 = M22 = (λ + 2µ)[2µ(λ + µ)]−1, M12 = M21 = 0,

where λ ≥ 0, µ > 0 are Lamé constants.
Relations (4.20) and (4.21) are similar in form to (1.15) but there is a large difference but between formulas

(1.15), (4.20), and (4.21): in the first group of equalities, Γ is an simple arc that connects the crack faces and
encompasses the tip, but on the right side of (4.21), the arc ΓR should begin and terminate at the same point.

Thus, for arbitrary anisotropy, the deformation basis of the singular solutions (1.1) gives simple integral
representations (4.2), (4.20) and (1.15), (4.21) for all elements of the matrices M(0) and M′(0) that appear in
formulas (4.1), (4.13), and (4.14) and refer to the attributes of Griffith’s criterion.
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